Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 89(5): 1252-1263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483496

RESUMEN

A biochar from co-pyrolysis of a mixture of sawdust and biological sludge (70/30, w/w), providing a high environmental compatibility in terms of water leachable polycyclic aromatic hydrocarbons and inorganic elements, together with a remarkable surface area (389 m2/g), was integrated into laboratory-scale vertical-flow constructed wetlands (VF-CWs), planted with Phragmites australis and unplanted. Biochar-filled VF-CWs have been tested for 8 months for the refining of effluents from the tertiary clariflocculation stage of a wastewater treatment plant operating in a mixed domestic-industrial textile context, in comparison with systems filled with gravel. VF-CW influents and effluents were monitored for chemical oxygen demand (COD), nitrogen and phosphorus cycles, and absorbance values at 254 and 420 nm, the latter as rapid and reliable screening parameters of the removal of organic micropollutants containing aromatic moieties and/or chromophores. Biochar-based systems provided a statistically significant improvement in COD (Δ = 22%) and ammonia (Δ = 35%) removal, as well as in the reduction of UV-Vis absorbance values (Δ = 32-34% and Δ = 28% for 254 and 420 nm, respectively), compared to gravel-filled microcosms. The higher removal of organic was mainly attributed to the well-known adsorption properties of biochars, while for nitrogen the biological mechanisms seem to play a predominant role.


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Aguas Residuales , Pirólisis , Humedales , Nitrógeno , Textiles
2.
Anal Bioanal Chem ; 414(21): 6295-6307, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35471251

RESUMEN

The reutilization of waste and the reduction of the general environmental impact of every production are fundamental goals that must be achieved in the framework of a circular economy. Recycled carbon-rich materials may represent a promising alternative to other less-sustainable carbonaceous materials used in the production of electrochemical sensing platforms. Herein, we propose an innovative carbon paste electrode (CPE) composed of biochar derived from biological sludge obtained from municipal and industrial wastewater treatment plants. The physicochemical properties of the biochar after a chemical treatment with an acidic solution obtained from industrial by-products were investigated. The electrode surface characterization was carried out by analyzing common redox probes and multiple phenols bearing varying numbers of -OH and -OCH3 groups in their structure. Furthermore, the CPE was also tested on the evaluation of the phenolic fingerprints of Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Fragaria × ananassa. Standard anthocyanin mixtures and extracts of the aforementioned fruits were analyzed to provide a phenolic characterization of real samples. The obtained results show that the sewage sludge-derived biochar can be a promising material for the development of electroanalytical sensors.


Asunto(s)
Aguas del Alcantarillado , Vaccinium , Antocianinas , Carbón Orgánico , Frutas , Fenoles
3.
J Mater Chem B ; 6(19): 2972-2981, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30345059

RESUMEN

We synthesized previously unreported copolymers with cleavable acid-labile side chains for use as electrochemical sensing layers in order to demonstrate a novel architecture for a one-step immunosensor. This one-step system is in contrast to most antigen-capture signal amplification methods that involve complicated secondary labeling techniques, or require the addition of redox probes to achieve a sensing response. A series of novel copolymers composed of various trityl-containing monomers were synthesized and characterized to determine their dielectric properties. Results indicate that the thin films of these polymers are stable in water, but some begin to degrade under acidic conditions or upon antigen binding, causing observable changes in the phase angle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...